1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
| import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline plt.rcParams['font.sans-serif'] = ['Simhei'] mpl.rcParams['axes.unicode_minus'] = False
x_data= [ 338., 333., 328., 207., 226., 25., 179., 60., 208., 606.] y_data= [ 640., 633., 619., 393., 428., 27., 193., 66., 226., 1591.]
x = np.arange(-200, -100, 1) y = np.arange(-5,5,0.1) Z = np.zeros((len(x), len(y))) X, Y = np.meshgrid(x, y) for i in range(len(x)): for j in range(len(y)): b = x[i] w = y[j] Z[j][i] = 0 for n in range(len(x_data)): Z[j][i] = Z[j][i] + (y_data[n] - b - w*x_data[n]) **2 Z[j][i] = Z[j][i] /len(x_data)
b = -120 w = -4 lr =0.0000001 iteration = 100000
b_history = [b] w_history = [w]
for i in range(iteration): b_grad = 0.0 w_grad = 0.0 for n in range(len(x_data)): b_grad = b_grad - 2.0*(y_data[n] - b - w*x_data[n]) *1.0 w_grad = w_grad - 2.0*(y_data[n] - b - w*x_data[n])*x_data[n] b = b - lr * b_grad w = w - lr * w_grad b_history.append(b) w_history.append(w)
plt.contourf(x, y, Z, 50, alpha = 0.5, cmap=plt.get_cmap('jet')) plt.plot([-188.4], [2.67], 'x', ms = 12, markeredgewidth = 3, color='orange') plt.plot(b_history, w_history, 'o-', ms=3, lw=1.5, color='black') plt.xlim(-200, -100) plt.ylim(-5,5) plt.xlabel(r'$b$', fontsize=16) plt.ylabel(r'$w$', fontsize=16) plt.title("线性回归") plt.show()
|